Multipliers of BMO in the Bergman metric with applications to Toeplitz operators

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positive Toeplitz Operators on the Bergman Space

In this paper we find conditions on the existence of bounded linear operators A on the Bergman space La(D) such that ATφA ≥ Sψ and ATφA ≥ Tφ where Tφ is a positive Toeplitz operator on L 2 a(D) and Sψ is a self-adjoint little Hankel operator on La(D) with symbols φ, ψ ∈ L∞(D) respectively. Also we show that if Tφ is a non-negative Toeplitz operator then there exists a rank one operator R1 on L ...

متن کامل

Toeplitz Operators with Bmo Symbols on the Segal-bargmann Space

We show that Zorboska’s criterion for compactness of Toeplitz operators with BMO symbols on the Bergman space of the unit disc holds, by a different proof, for the Segal-Bargmann space of Gaussian square-integrable entire functions on Cn. We establish some basic properties of BMO for p ≥ 1 and complete the characterization of bounded and compact Toeplitz operators with BMO symbols. Via the Barg...

متن کامل

Finite Rank Toeplitz Operators in Bergman Spaces

We discuss resent developments in the problem of description of finite rank Toeplitz operators in different Bergman spaces and give some applications

متن کامل

Toeplitz Operators with Bmo Symbols and the Berezin Transform

We prove that the boundedness and compactness of the Toeplitz operator on the Bergman space with a BMO 1 symbol is completely determined by the boundary behaviour of its Berezin transform. This result extends the known results in the cases when the symbol is either a positive L 1-function or an L ∞ function. 1. Introduction. Toeplitz operators are one of the most widely studied classes of concr...

متن کامل

Toeplitz Operators and Weighted Bergman Kernels

For a smoothly bounded strictly pseudoconvex domain, we describe the boundary singularity of weighted Bergman kernels with respect to weights behaving like a power (possibly fractional) of a defining function, and, more generally, of the reproducing kernels of Sobolev spaces of holomorphic functions of any real order. This generalizes the classical result of Fefferman for the unweighted Bergman...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 1989

ISSN: 0022-1236

DOI: 10.1016/0022-1236(89)90003-7